癌症液体活检作为一种能从体液中获取疾病分子信息的无创检测技术,已在多种癌症中得到广泛应用。然而,现行的医学临床液体活检技术均依赖于生物特异性修饰步骤,导致其成本高、耗时长,从而难以真正应用到全民癌症普筛之中。近年来,表面增强拉曼散射(SERS)凭借其高灵敏度的技术优势,已在癌症相关的应用场景中崭露头角。其中,标签SERS虽然具有高精度,但需要依赖生物特异性修饰;无标签SERS虽然成本低廉,但难以规避体液微环境的扰动等问题。因此,研发一种兼顾高精度和低成本的SERS技术,对其在临床医学中的应用具有关键作用,是目前的研究难点和热点。
基于上述问题,武汉大学肖湘衡教授、武汉大学中南医院汪付兵教授与电子科技大学胡婧研究员合作建立了一种以低廉银纳米线为SERS探针的无标签、液相光学检测体系,并借助人工智能深入进行后续数据分析和癌症预测(SERS-AICS),最终在实验中,我们针对五种不同癌症的血清样本(样本来自382例健康个体和1582例患者)的精准普查(平均准确率高达95.81 %、平均灵敏度高达95.40 %、平均特异度高达95.87 %),通过进一步的临床实验,该技术有望进行I/II期癌症与癌前疾病的早期筛查(平均准确率高达88.39 %)。
这项技术有望用于低成本、快速且精准的全民癌症筛查。更重要的,该研究发现血样中通过降维获得的拉曼特征维度与癌症密切相关,且反映了更为微观的分子键能层面变化,这使SERS-AI有望成为一种涵盖已知癌症大分子标志物、甚至预测未来潜在癌症标志物的全光谱组学数据库来源。
该文章发表在卓越计划高起点新刊eLight上,论文链接:https://elight.springeropen.com/articles/10.1186/s43593-023-00051-5
新闻链接:https://mp.weixin.qq.com/s/ihHiDkhBFkhFw7Kc2NcxKQ